
A polynomial-time exact algorithm for the Subset Sum problem

Andrea Bianchini, Electronic/Informatic Engineer, https://www.es-andreabianchini.it

1.0 Definition of the problem.

Subset sum problem (SSP) can be defined as follow :

given a set W of n positive integers and a integer c, (capacity of the knapsack),

find

max z=∑x(i)w(i) 1.0

 s.t.

 ∑x(i)w(i)≤c 1.1

 x(i)=0 or 1; i=1,…,n 1.2

 0<w(i)≤c; i=1,…,n 1.3

In the present paper it will be always assumed that W is sorted in ascending order, i.e., w(i+1)

≥w(i), i=0,…,n-2.

Subset sum problem is a well known problem in operations research and it can be proved that

it belongs to complexity class NP-Hard, therefore finding an algorithm that solves SSP in polynomial-

time prove that P=NP.

1.1 Exploring solutions.

A trivial way to solve SSP is to enumerate all possible binary combination for x and chose the

optimal one, requiring in the worst case 2^n iterations.

The basic idea of the presented algorithm derive from the following question :

“does exist a way to explore all binary combination of x in a more efficient way ?”

the answer is : yes it do, and the complexity of this way is polynomial.

Let’s consider the following table that enumerates all binary combination of x for n=5 :

x base x base

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

5

5

5

 2

5

 3

 3

 3

5

 4

 4

 2

 4

 4

 4

 4

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

5

5

5

 2

5

 3

 3

 3

5

5

5

 2

5

5

5

5

Table 1.0

Definition 1.1.0 : base of a binary number

The base of a binary number x is defined by following code :

int base(int x[], int n)

{

 int i;

 i=0;

 while(x[i]==0 && i<n)

 i++;

 // i is the position of first “1” bit

 i++;

 // “1” skipped

 while(x[i]==0 && i<n)

 i++;

 // all “0” skipped

 // i is the position of the second “1” bit

 while(x[i]==1 && i<n)

 i++;

 return i;

}

As you can see from table 1.0 and from code definition the base of a binary number x is the

position of the at least second “1” bit whit successor “0” starting from less significant bit (rightmost

bit).

We can obtain all binary numbers of base k starting from 0 adding “1” and shifting one by one

until k then again adding “1” and shifting this last until k-1 and so on until all bit from 1 to k are “1”.

Definition 1.1.1 The base k of a binary number x is pure if x(i)=0 for all i>k.

Examples for n=5 :

 x = 00011 base=2 pure.

 x = 10011 base=2 not pure.

 x = 00101 base=3 pure.

 x = 10101 base=3 not pure.

Cardinality of set of all numbers in a given pure base pb can be easily computed as to be O(∑(pb-

i),i=1,…,pb).

Definition 1.1.2 We denote with “x inc k” the increment of x by k positions in the same base of x,

and similarly we denote with “x dec k” the decrement of x by k positions in the same base of x.

 Examples for n=5 :

 x x inc 1 x dec 1

 00001 00010 00000

 00100 01000 00010

 01100 01101 01010

 01101 01110 01100

Proposition 1.1.0 Solutions z=x*w whit all x of the same base are monotone if W is monotone.

Proof. At each increment of x in the given base we add an item w[h] and eventually subtract an item

w[k]≤w[h].

Proposition 1.1.1 Searching the maximum of z=x*w not exceeding c in all possible x of the same

base can be performed in O(log(n)) time.

Proof. Binary search of a value in a sorted array of values.

1.2 Improving ideas.

Let be “xa” a general feasible solution vector of pure base “ba” and let be “a” the corresponding sum,

i.e., a=xa*w.

Proposition 1.2.0 if a≥a’ for all possible a’ with a and a’ of any pure base b=2,…,n, let be ba the base

of a, then there exist at least an optimal solution of value osa such that xosa≤xa and xosa>(2^ba)-1,

i.e., there exists an optimal solution vector xosa less than or equal to solution vector xa and greater

than (2^ba)-1. (base of (2^ba)-1 is ba’=ba-1, therefore grater feasible solution of pure base ba’ is, for

definition, less than or equal to a)

Proof. If a=c proof is obvious. Let’s consider a capacity c=a+k, k>0. Let be xosa the optimal solution

vector obtainable under condition xosa≤xa and xosa>(2^ba)-1, let be osa it’s solution value, i.e.,

osa=xosa*w, we can write osa=a+α, α≥0.

We can say that k≥α because osa=a+α≤c, but a=c-k therefore c-k+α≤c therefore k≥α.

Suppose that a solution vector xos>xa or xos≤(2^ba)-1 exists such that os>osa, then we can write

os=a’+α’>osa=a+α, but a=c-k therefore a’+α’>c-k+α≥c-k+k, therefore, a’+α’>c that, for definition,

is impossible.

It’s important to note that it’s not excluded the presence of an optimal solution xos>xa or xos≤(2^ba)-

1, but simply if such solution exists then the same solution value do exists for x≤xa and x>(2^ba)-1.

Proposition 1.2.1 Finding a≥a’ for all possible a’ with a and a’ of any pure base b=2,…,n, can be

performed in O(n*log(n)) time.

Proof. It will be shown the O(n*log(n)) algorithm maxABase.

int maxABase(int[] w, int n, int c)

{

int k,k1,lsb1,lsb2,lsbmax,lsbmin,i,amax,basemax,base;

i=n-1;

k=0;

 while(k<c && i>=0)

 {

if (k+w[i]<=c)

 {

 k+=w[i];

 lsb1=i;

 }

 else

 break;

 i--;

 }

 lsbmin=0;

 lsbmax=lsb1-1;

 lsb2=binarySearch(w,c-k,lsbmin,lsbmax);

 if (lsb2>-1)

 k+=w[lsb2];

 amax=0;

 basemax=n;

 base=n;

while(base>1)

 {

 if (lsb2>-1)

 k-=w[lsb2];

 i=base-1;

 k-=w[i];

 base--;

 i=lsb1-1;

 while(k<c && i>=0)

 {

 if (k+w[i]<=c)

 {

 k+=w[i];

 lsb1=i;

 }

 else

 break;

 i--;

 }

 lsbmin=0;

 lsbmax=lsb1-1;

 lsb2=binarySearch(w,c-k,lsbmin,lsbmax);

 if (lsb2>-1)

 k+=w[lsb2];

 if (k>amax)

 {

 amax=k;

 basemax=base;

 }

 base--;

 }

 return basemax;

}

binarySearch is a function that searches for an item w(lsb2)=max w(i) ≤c-k, i=lsbmin,…,lsbmax,

which can be performed in O(log(n)) time.

Proposition 1.2.2 given a≥a’ for all possible a’ with a and a’ of any pure base pb=2,…,n, then

finding optimal solution xosa≤xa and xosa>(2^ba)-1, can be performed in O(n^2*log(n)) time.

Proof. We consider SSP’, i.e., finding ∑x(i)w(i)≤c-a with items w(i),i<lsb (less significant bit), then

SSP’’,i.e., finding ∑x(i)w(i)≤c-(a dec 1) with items w(i),i<lsb, until finding ∑x(i)w(i)≤c-(a dec z)

with items w(i),i<lsb, where xa dec z is the first available binary number of base a.

Cardinality of set of all numbers in a given pure base pb can be easily computed as to be O(∑(pb-

i),i=1,…,pb).

Worst-case time complexity of algorithm.

We can now summarize steps of algorithm for a global worst-case time complexity evaluation :

 STEP COST

 1 – Sort of weights array w in ascending order. O(n*log(n))

 2 – Search of max pure base a. O(n*log(n))

 3 – Search of optimal solution vector x≤xa, x>(2^ba)-1. O(n^2*log(n))

 worst case time complexity of algorithm : O(n^2*log(n)).

expected time complexity of algorithm : O(n*log(n)).

References.

[1] Silvano Martello, PaoloToth, 1990. Knapsack Problems Algorithms And Computer

implementations.

[2] Hans Kellerer, Ulrich Pferschy, David Pisinger, 2004. Knapsack Problems.

[3] Michael R. Garey, David S. Johnson WH Freeman, 1979. Computers and Intractability: A guide

to the theory of NP-completeness.

