A polynomial-time exact algorithm for the Subset Sum problem

Andrea Bianchini, Electronic/Informatic Engineer, https://www.es-andreabianchini.it

1.0 Definition of the problem.

Subset sum problem (SSP) can be defined as follow:
given a set W of n positive integers and a integer c, (capacity of the knapsack),

\[
\begin{align*}
\text{find} & \\
\max z &= \sum x(i)w(i) & 1.0 \\
\text{s.t.} & \\
\sum x(i)w(i) & \leq c & 1.1 \\
x(i) &= 0 \text{ or } 1; \ i = 1, \ldots, n & 1.2 \\
0 & < w(i) \leq c; \ i = 1, \ldots, n & 1.3
\end{align*}
\]

In the present paper it will be always assumed that W is sorted in ascending order, i.e., $w(i+1) \geq w(i), \ i = 0, \ldots, n-2$.

Subset sum problem is a well known problem in operations research and it can be proved that it belongs to complexity class NP-Hard, therefore finding an algorithm that solves SSP in polynomial-time prove that $P=NP$.
1.1 Exploring solutions.

A trivial way to solve SSP is to enumerate all possible binary combination for x and chose the optimal one, requiring in the worst case 2^n iterations.

The basic idea of the presented algorithm derive from the following question: “does exist a way to explore all binary combination of x in a more efficient way?” the answer is: yes it do, and the complexity of this way is polynomial.

Let’s consider the following table that enumerates all binary combination of x for $n=5$:

<table>
<thead>
<tr>
<th>x</th>
<th>base</th>
<th>x</th>
<th>base</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>5</td>
<td>10000</td>
<td>5</td>
</tr>
<tr>
<td>00001</td>
<td>5</td>
<td>10001</td>
<td>5</td>
</tr>
<tr>
<td>00010</td>
<td>5</td>
<td>10010</td>
<td>5</td>
</tr>
<tr>
<td>00011</td>
<td>2</td>
<td>10011</td>
<td>2</td>
</tr>
<tr>
<td>00100</td>
<td>5</td>
<td>10100</td>
<td>5</td>
</tr>
<tr>
<td>00101</td>
<td>3</td>
<td>10101</td>
<td>3</td>
</tr>
<tr>
<td>00110</td>
<td>3</td>
<td>10110</td>
<td>3</td>
</tr>
<tr>
<td>00111</td>
<td>3</td>
<td>10111</td>
<td>3</td>
</tr>
<tr>
<td>01000</td>
<td>5</td>
<td>11000</td>
<td>5</td>
</tr>
<tr>
<td>01001</td>
<td>4</td>
<td>11001</td>
<td>5</td>
</tr>
<tr>
<td>01010</td>
<td>4</td>
<td>11010</td>
<td>5</td>
</tr>
<tr>
<td>01011</td>
<td>2</td>
<td>11011</td>
<td>2</td>
</tr>
<tr>
<td>01100</td>
<td>4</td>
<td>11100</td>
<td>5</td>
</tr>
<tr>
<td>01101</td>
<td>4</td>
<td>11101</td>
<td>5</td>
</tr>
<tr>
<td>01110</td>
<td>4</td>
<td>11110</td>
<td>5</td>
</tr>
<tr>
<td>01111</td>
<td>4</td>
<td>11111</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1.0
Definition 1.1.0 : base of a binary number

The base of a binary number x is defined by following code :

```c
int base(int x[], int n)
{
    int i;
    i=0;
    while(x[i]==0 && i<n)
        i++;
    // i is the position of first “1” bit
    i++;
    // “1” skipped
    while(x[i]==0 && i<n)
        i++;
    // all “0” skipped
    // i is the position of the second “1” bit
    while(x[i]==1 && i<n)
        i++;
    return i;
}
```

As you can see from table 1.0 and from code definition the base of a binary number x is the position of the at least second “1” bit whit successor “0” starting from less significant bit (rightmost bit).

We can obtain all binary numbers of base k starting from 0 adding “1” and shifting one by one until k then again adding “1” and shifting this last until k-1 and so on until all bit from 1 to k are “1”.
Definition 1.1.1 The base k of a binary number x is *pure* if $x(i)=0$ for all $i>k$.

Examples for $n=5$:

- $x = 00011$ base=2 pure.
- $x = 10011$ base=2 not pure.
- $x = 00101$ base=3 pure.
- $x = 10101$ base=3 not pure.

Cardinality of set of all numbers in a given pure base p_b can be easily computed as to be $O(\sum(p_b-i), i=1,\ldots,p_b)$.

Definition 1.1.2 We denote with “$x\text{ inc } k$” the increment of x by k positions in the same base of x, and similarly we denote with “$x\text{ dec } k$” the decrement of x by k positions in the same base of x.

Examples for $n=5$:

<table>
<thead>
<tr>
<th>x</th>
<th>x inc 1</th>
<th>x dec 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>00010</td>
<td>00000</td>
</tr>
<tr>
<td>00100</td>
<td>01000</td>
<td>00010</td>
</tr>
<tr>
<td>01100</td>
<td>01101</td>
<td>01010</td>
</tr>
<tr>
<td>01101</td>
<td>01110</td>
<td>01100</td>
</tr>
</tbody>
</table>

Proposition 1.1.0 Solutions $z=x^*w$ whit all x of the same base are monotone if W is monotone.

Proof. At each increment of x in the given base we add an item $w[h]$ and eventually subtract an item $w[k]\leq w[h]$.

Proposition 1.1.1 Searching the maximum of $z=x^*w$ not exceeding c in all possible x of the same base can be performed in $O(\log(n))$ time.

Proof. Binary search of a value in a sorted array of values.
1.2 Improving ideas.

Let be “xa” a general feasible solution vector of pure base “ba” and let be “a” the corresponding sum, i.e., \(a = xa \cdot w \).

Proposition 1.2.0 if \(a \geq a' \) for all possible a’ with a and a’ of any pure base \(b = 2, \ldots, n \), let be ba the base of a, then there exist at least an optimal solution of value osa such that \(xosa \leq xa \) and \(xosa > (2^ba) - 1 \), i.e., there exists an optimal solution vector xosa less than or equal to solution vector xa and greater than \((2^ba) - 1 \). (base of \((2^ba) - 1 \) is ba’=ba-1, therefore grater feasible solution of pure base ba’ is, for definition, less than or equal to a)

Proof. If \(a = c \) proof is obvious. Let’s consider a capacity \(c = a + k , k > 0 \). Let be xosa the optimal solution vector obtainable under condition \(xosa \leq xa \) and \(xosa > (2^ba) - 1 \), let be osa it’s solution value, i.e., \(osa = xosa \cdot w \), we can write osa = a+\(\alpha \), \(\alpha \geq 0 \).

We can say that \(k \geq \alpha \) because osa = a+\(\alpha \leq c \), but a = c-k therefore c-k+\(\alpha \leq c \) therefore \(k \geq \alpha \).

Suppose that a solution vector xos > xa or xos \(\leq (2^ba) - 1 \) exists such that os > osa, then we can write os = a'+\(\alpha' \), osa = a+\(\alpha \), but a = c-k therefore a'+\(\alpha' \) \geq c-k+\(\alpha \) \geq k, therefore, \(a'+\alpha' > c \) that, for definition, is impossible.

It’s important to note that it’s not excluded the presence of an optimal solution xos > xa or xos \(\leq (2^ba) - 1 \), but simply if such solution exists then the same solution value do exists for x \(\leq xa \) and x > \((2^ba) - 1 \).
Proposition 1.2.1 Finding \(a \geq a' \) for all possible \(a' \) with a and \(a' \) of any pure base \(b=2,\ldots,n \), can be performed in \(O(n^2 \log(n)) \) time.

Proof. It will be shown the \(O(n^2 \log(n)) \) algorithm \(\text{maxA}
\text{Base} \).

```c
int \text{maxA}
\text{Base}(\text{int[]} \ w, \text{int} n, \text{int} c)
{
    \text{int } k,k1,\text{lsb}1,\text{lsb}2,\text{lsbmax},\text{lsbmin},i,\text{amax},\text{basemax},\text{base};
    \text{i}=n-1;
    k=0;
    \text{while}(k\text{<c }\&\& i\geq0)
    {
        \text{if } (k+w[i]\leq c)
        {
            k+=w[i];
            \text{lsb}1=i;
        }\text{else}
        {
            \text{break};
        }
        i--;
    }
    \text{lsbmin}=0;
    \text{lsbmax}=\text{lsb}1-1;
    \text{lsb}2=\text{binarySearch}(w,c-k,\text{lsbmin},\text{lsbmax});
    \text{if } \text{lsb}2>1
    {
        k+=w[\text{lsb}2];
    }
    \text{amax}=0;
    \text{basemax}=n;
    \text{base}=n;
    \text{while}(\text{base}>1)
    {
        \text{if } \text{lsb}2>1
        {
            k-=w[\text{lsb}2];
        }
        i=\text{base}-1;
        k-=w[i];
        \text{base}--;
        \text{i}=\text{lsb}1-1;
        \text{while}(k\text{<c }\&\& i\geq0)
        {
            \text{if } (k+w[i]\leq c)
            {
                k+=w[i];
                \text{lsb1}=i;
            }\text{else}
            {
                \text{break};
            }
            i--;
        }
    }
```
let lsbmin=0;
let lsbmax=lsb1-1;
let lsb2=binarySearch(w,c-k,lsbmin,lsbmax);
if (lsb2>l-1)
 k+=w[lsb2];
if (k>amax)
 {
 amax=k;
 basemax=base;
 }
 base--;
return basemax;

binarySearch is a function that searches for an item \(w(\text{lsb}2)=\max w(i) \leq c-k \), \(i=\text{lsbmin}, \ldots,\text{lsbmax} \), which can be performed in \(O(\log(n)) \) time.

Proposition 1.2.2 given \(a \geq a' \) for all possible \(a' \) with \(a \) and \(a' \) of any pure base \(p_b=2, \ldots, n \), then finding optimal solution \(x_{osa} \leq x_a \) and \(x_{osa} > (2^{ba} - 1) \), can be performed in \(O(n^2 \times \log(n)) \) time.

Proof. We consider SSP', i.e., finding \(\sum_{i<\text{lsb}} x(i)w(i) \leq c-a \) with items \(w(i), i<\text{lsb} \) (less significant bit), then SSP'', i.e., finding \(\sum_{i<\text{lsb}} x(i)w(i) \leq c-(a \text{ dec } 1) \) with items \(w(i), i<\text{lsb} \), until finding \(\sum_{i<\text{lsb}} x(i)w(i) \leq c-(a \text{ dec } z) \) with items \(w(i), i<\text{lsb} \), where \(x_a \text{ dec } z \) is the first available binary number of base \(a \).
Cardinality of set of all numbers in a given pure base \(p_b \) can be easily computed as to be \(O(\sum(p_b-i), i=1, \ldots, p_b) \).
Worst-case time complexity of algorithm.

We can now summarize steps of algorithm for a global worst-case time complexity evaluation:

<table>
<thead>
<tr>
<th>STEP</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Sort of weights array w in ascending order.</td>
<td>$O(n \log(n))$</td>
</tr>
<tr>
<td>2 – Search of max pure base a.</td>
<td>$O(n \log(n))$</td>
</tr>
<tr>
<td>3 – Search of optimal solution vector $x \leq x_a$, $x > (2^b a) - 1$.</td>
<td>$O(n^2 \log(n))$</td>
</tr>
</tbody>
</table>

worst case time complexity of algorithm: $O(n^2 \log(n))$.
expected time complexity of algorithm: $O(n \log(n))$.
References.