A Polynomial-time Exact Algorithm for the Subset Sum Problem.

Andrea Bianchini, Electronic Engineer, http://www.es-andreabianchini.it

Abstract. Subset sum problem, (SSP), is an important problem in complexity theory, it belongs to complexity class NP-Hard, therefore to find a polynomial-time exact algorithm that solves subset sum problem proves that P=NP. In the present paper it will be shown a theorem that allows us to develop, as described in the paper, an algorithm of polynomial-time complexity. For a deepening on complexity theory and a proof about SSP complexity refer to : "Computers and Intractability: A guide to the theory of NP-completeness.", Michael R. Garey, David S. Johnson WH Freeman, 1979.

1.0 Definition of the problem.

Subset sum problem (SSP) can be defined as follow : Given a set W of n positive integers and an integer c,

find

max $z=\sum x(i)w(i)$; i=1,...,n 1.0

s.t. :

$\sum x(i)w(i) \leq c; i=1,,n$	1.1
x(i)=0 or 1; i=1,,n	1.2
0 <w(i)≤c; i="1,,n</td"><td>1.3</td></w(i)≤c;>	1.3

In the present paper it will be always assumed that W is sorted in ascending order, i.e., $w(i+1) \ge w(i), i=1,...,n-1$.

1.1 Exploring solutions.

A trivial way to solve SSP is to enumerate all possible binary combinations of x and choose the optimal one, requiring, in the worst case 2^{n} , iterations.

The basic idea of the presented algorithm derive from the following question :

"does exist a way to explore all binary combination of x in a more efficient way ?"

the answer is : yes it do, and the complexity of this way is polynomial.

Let's consider the following table that enumerates all binary combination of x for n=5:

Х	base	Х	Base
00000	5	10000	5
00001	5	10001	5
00010	5	10010	5
00011	2	10011	2
00100	5	10100	5
00101	3	10101	3
00110	3	10110	3
00111	3	10111	3
01000	5	11000	5
01001	4	11001	5
01010	4	11010	5
01011	2	11011	2
01100	4	11100	5
01101	4	11101	5
01110	4	11110	5
01111	4	11111	5

Table 1.0

Definition 1.1.0 : *base* of a binary number.

The base of a binary number x is defined by following code :

```
int base(int x[], int n)
{
    int i;
    i=0;
    while(x[i]==0 && i<n)
        i++;
    // i is the position of first "1" bit
    i++;
    // "1" skipped
    while(x[i]==0 && i<n)
        i++;
    // all "0" skipped
    // i is the position of the second "1" bit</pre>
```

}

As you can see from table 1.0 and from code definition the base of a binary number x is the position of the at least second "1" bit whit successor "0" starting from less significant bit (rightmost bit).

We can obtain all binary numbers of base k starting from 0 adding "1" and shifting one by one until k then again adding "1" and shifting this last until k-1 and so on until all bit from 1 to k are "1".

Definition 1.1.1 The base k of a binary number x is *pure* if x(i)=0 for all i>k.

Examples for n=5 :

x = 00011	base=2	pure.
x = 10011	base=2	not pure.
x = 00101	base=3	pure.
x = 10101	base=3	not pure.

Cardinality of set of all numbers in a given pure base pb can be easily computed as to be $O(\sum(pb-i),i=1,...,pb)$.

Definition 1.1.2 We denote with "x inc k" the increment of x by k positions in the same base of x, and similarly we denote with "x dec k" the decrement of x by k positions in the same base of x.

Examples for n=5 :

Х	x inc 1	x dec 1
00001	00010	00000
00100	01000	00010
01100	01101	01010
01101	01110	01100

Proposition 1.1.0 Solutions z=x*w whit all x of the same base are monotone if W is monotone.

Proof. At each increment of x in the given base we add an item w[h] and eventually subtract an item w[k] \leq w[h].

Proposition 1.1.1 Searching the maximum of z=x*w not exceeding c in all possible x of the same base can be performed in $O(\log(n))$ time.

Proof. Binary search of a value in a sorted array of values.

1.2 Improving ideas.

Let be "xa" a feasible solution vector, (not necessarily optimal), of pure base "ba" and let be "a" the correspondent solution value, i.e., a=xa*w.

Theorem 1.2.0 if $a \ge a'$ for all possible a' with a and a' of any pure base b=2,...,n, let be ba the base of a, then do exist almost an optimal solution of value osa such that xosa < (xa inc 1) and $xosa > 2^{ba}$ -1, i.e., do exist an optimal solution vector xosa less than solution vector (xa inc 1) and greater than solution vector 2^{ba} -1. (the base of 2^{ba} -1 is ba'=ba-1, therefore the greater feasible solution of pure base ba' is, by definition, less than or equal to a)

Proof. If a=c proof is obvious. If a<c lets consider a capacity c=a+k, k>0. Let be xosa optimal solution vector obtainable under condition xosa<(xa inc 1) and xosa>2^{ba}-1, let be osa its solution value, i.e., osa=xosa*w, we can write osa=a+ α , $\alpha \ge 0$.

We can say that $k \ge \alpha$ because $osa=a+\alpha \le c$, but a=c-k, therefore, $c-k+\alpha \le c$, therefore, $k\ge \alpha$.

Suppose that exists an optimal solution vector xos, xos>(xa inc 1) or xos $\leq 2^{ba}-1$, such that os>osa, we can write os=a'+ α ' and c=a'+k+z, z ≥ 0 , in fact a' $\leq a$.

It can be proved that $a+\alpha \ge a'+\alpha'$, in fact $a+\alpha \le c=a'+k+z$, therefore, $a'+k+z\ge a'+\alpha'$, i.e., $k+z\ge \alpha'$, that is always true.

It is important to notice that it is not excluded the presence of an optimal solution xos, xos>(xa inc 1) or $xos \le 2^{ba}-1$, but simply, if such a solution exists then a solution of the same value do exists also for x<(xa inc 1) and x>2^{ba}-1.}

Proposition 1.2.1 Finding $a \ge a$ ' for all possible a' with a and a' of any pure base b=2,...,n, can be performed in O(n*log(n)) time.

Proof. It will be shown the algorithm maxABase of O(n*log(n)) complexity.

```
int maxABase(int[] w, int n, int c)
{
      int k,k1,lsb1,lsb2,lsbmax,lsbmin,i,amax,basemax,base,nitems;
      i=n-1;
      k=0;
      while (k<c && i >= 0)
      {
            if (k+w[i]<=c)
            {
                  k+=w[i];
                  lsb1=i;
            }
            else
                  break;
            i--;
      lsbmin=0;
      lsbmax=lsb1-1;
      lsb2=binarySearch(w,c-k,lsbmin,lsbmax);
      if (lsb2>-1)
```

```
k += w[lsb2];
amax=k;
basemax=n;
base=n;
while(base>1)
{
      if (lsb2>-1)
            k-=w[lsb2];
      i=base-1;
      k-=w[i];
      i=lsb1-1;
      while(k<c && i>=0)
      {
            if (k+w[i]<=c)
             {
                   k+=w[i];
                   lsb1=i;
            }
            else
                   break;
            i--;
      }
      lsbmin=0;
      lsbmax=lsb1-1;
      lsb2=binarySearch(w,c-k,lsbmin,lsbmax);
      if (lsb2>-1)
            k += w[lsb2];
      if (k>amax)
      {
            amax=k;
            basemax=base-1;
      }
      base--;
}
```

}

return basemax;

binarySearch() is a function that searches for item w(lsb2)=max w(i) \leq c-k, i=lsbmin,...,lsbmax, that can be executed in O(log(n)) time.

Proposition 1.2.2 given $a \ge a'$ for all possible a' with a and a' of any pure base b=2,...,n, then finding optimal solution xosa, xosa<(xa inc 1) and xosa>2^{ba}-1, can be performed in O(n³*log(n)) time.

Proof. Lets consider SSP', i.e., finding $\sum x(i)w(i) \le c-a$ with items $w(i), i \le lsb(a)$, then SSP'', i.e., finding $\sum x(i)w(i) \le c-(a-2^{lsb}(a))$ with items $w(i), i \le lsb(a)$, then SSP''', i.e., finding $\sum x(i)w(i) \le c-(a-2^{lsb}(a)-2^{lsb'}(a))$ with items $w(i), i \le lsb'(a)$, then SSP'''', i.e., finding $\sum x(i)w(i) \le c-(a-2^{lsb}(a)-2^{lsb'}(a))$ with items $w(i), i \le lsb'(a)$, until finding $\sum x(i)w(i) \le c-(2^{msb}(a)+2^{msb'}(a))$ with items $w(i), i \le lsb''(a)$, until finding $\sum x(i)w(i) \le c-(2^{msb}(a)+2^{msb'}(a))$ with items $w(i), i \le lsb''(a) \ge 1$.

In reality it is not necessary to consider all significant bits in "a" but all of it while condition $\alpha' < a'$ is true. In fact if $\alpha' > a'$ it is also true that $a + \alpha > a' + \alpha'$ because under such conditions we have $a + \alpha > 2*a'$ that is also true. It can be done better considering instead of $\alpha' < a'$, $\theta*\alpha' < a'$ with optimal θ calculated as : $\theta = (\prod \log_{10}(n/10^{i}))/2 + 2*c/(n*(MAX+MIN)))$, $i=0,...,\log_{10}(n)-1$, MAX=w(n-1), MIN=w(0).

Because of number of significant bits in "a" are O(n) we need $O(n)*O(n*log(n))*O(n)=O(n^3*log(n))$ time to find the solution.

where :

lsb(a) = less significant bit of a. lsb'(a) = second less significant bit of a. lsb''(a) = third less significant bit of a. msb(a) = most significant bit of a. msb'(a) = second most significant bit of a.

Worst case time-complexity of algorithm.

We can summarize the steps needed to implement the whole algorithm for a worst-case total timecomplexity evaluation of algorithm.

STEP	COMPLEXITY
1 – Sort of w in ascending order.	O(n*log(n))
2 – Search of max pure base "a".	O(n*log(n))
3 – Search of optimal solution $x < (xa \text{ inc } 1), x > (2 ba)-1$.	$O(n^{3*}log(n))$

Worst-case time complexity of algorithm :	$O(n^{3*}log(n)).$
Expected time complexity of algorithm :	O(n*log(n)).
Space consumption of algorithm :	O(n) .

References.

[1] Silvano Martello, PaoloToth, 1990. Knapsack Problems Algorithms And Computer implementations.

[2] Hans Kellerer, Ulrich Pferschy, David Pisinger, 2004. Knapsack Problems.
[3] Michael R. Garey, David S. Johnson WH Freeman, 1979. Computers and Intractability: A guide to the theory of NP-completeness.