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1.0 Definition of the problem. 

 

Subset sum problem (SSP) can be defined as follow : 

given a set W of n positive integers and a integer c, (capacity of the knapsack),  

 

find  

 

max z=∑x(i)w(i)    1.0 

 s.t. 

  ∑x(i)w(i)≤c     1.1 

 

  x(i)=0 or 1; i=1,…,n   1.2 

 

  0<w(i)≤c;   i=1,…,n   1.3 

 

In the present paper it will be always assumed that W is sorted in ascending order, i.e., w(i+1) 

≥w(i), i=0,…,n-2. 

Subset sum problem is a well known problem in operations research and it can be proved that 

it belongs to complexity class NP-Hard, therefore finding an algorithm that solves SSP in polynomial-

time prove that P=NP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.1 Exploring solutions. 

 

A trivial way to solve SSP is to enumerate all possible binary combination for x and chose the 

optimal one, requiring in the worst case 2^n iterations.  

The basic idea of the presented algorithm derive from the following question : 

“does exist a way to explore all binary combination of x in a more efficient way ?” 

the answer is : yes it do, and the complexity of this way is polynomial. 

Let’s consider the following table that enumerates all binary combination of x for n=5 : 

 

x base x base 

00000 

00001 

00010 

00011 

00100 

00101 

00110 

00111 

01000 

01001 

01010 

01011 

01100 

01101 

01110 

01111 

5 

5 

5 

         2 

5 

      3 

      3 

      3 

5 

   4 

   4 

         2 

   4 

   4  

   4 

   4 

10000 

10001 

10010 

10011 

10100 

10101 

10110 

10111 

11000 

11001 

11010 

11011 

11100 

11101 

11110 

11111 

5 

5 

5 

       2 

5 

    3 

    3 

    3 

5 

5 

5 

       2 

5 

5 

5 

5 

Table 1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Definition 1.1.0 : base of a binary number 

 

The base of a binary number x is defined by following code : 

 

int base(int x[], int n) 

{ 

 int i; 

 

 i=0; 

 while(x[i]==0 && i<n) 

  i++;   

 // i is the position of first “1” bit 

 

 i++; 

 // “1” skipped 

 

 while(x[i]==0 && i<n) 

  i++;   

 // all “0” skipped 

 

 // i is the position of the second “1” bit 

 while(x[i]==1 && i<n) 

  i++; 

 

 return i; 

} 

 

As you can see from table 1.0 and from code definition the base of a binary number x is the 

position of the at least second “1” bit whit successor “0” starting from less significant bit (rightmost 

bit). 

We can obtain all binary numbers of base k starting from 0 adding “1” and shifting one by one 

until k then again adding “1” and shifting this last until k-1 and so on until all bit from 1 to k are “1”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Definition 1.1.1 The base k of a binary number x is pure if x(i)=0 for all i>k. 

 

Examples for n=5 : 

 

  x = 00011 base=2  pure. 

  x = 10011 base=2  not pure. 

  x = 00101 base=3  pure. 

  x = 10101 base=3  not pure. 

 

Cardinality of set of all numbers in a given pure base pb can be easily computed as to be O(∑(pb-

i),i=1,…,pb). 

 

 

Definition 1.1.2 We denote with “x inc k” the increment of x by k positions in the same base of x, 

and similarly we denote with “x dec k” the decrement of x by k positions in the same base of x.  

 

 Examples for n=5 : 

   

  x   x inc 1    x dec 1 

  00001  00010   00000 

  00100  01000   00010 

  01100  01101   01010 

  01101  01110   01100 

 

Proposition 1.1.0 Solutions z=x*w whit all x of the same base are monotone if W is monotone. 

 

Proof.  At each increment of x in the given base we add an item w[h] and eventually subtract an item 

w[k]≤w[h]. 

 

Proposition 1.1.1 Searching the maximum of z=x*w not exceeding c in all possible x of the same 

base can be performed in O(log(n)) time. 

 

Proof. Binary search of a value in a sorted array of values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.2 Improving ideas. 

 

Let be “xa” a general feasible solution vector of pure base “ba” and let be “a” the corresponding sum, 

i.e., a=xa*w. 

 

Proposition 1.2.0 if a≥a’ for all possible a’ with a and a’ of any pure base b=2,…,n, let be ba the base 

of a, then there exist at least an optimal solution of value osa such that xosa≤xa and xosa>(2^ba)-1, 

i.e., there exists an optimal solution vector xosa less than or equal to solution vector xa and greater 

than (2^ba)-1. (base of (2^ba)-1 is ba’=ba-1, therefore grater feasible solution of pure base ba’ is, for 

definition, less than or equal to a) 

 

Proof. If a=c proof is obvious. Let’s consider a capacity c=a+k, k>0. Let be xosa the optimal solution 

vector obtainable under condition xosa≤xa and xosa>(2^ba)-1, let be osa it’s solution value, i.e., 

osa=xosa*w, we can write osa=a+α, α≥0. 

We can say that k≥α because osa=a+α≤c, but a=c-k therefore c-k+α≤c therefore k≥α. 

Suppose that a solution vector xos>xa or xos≤(2^ba)-1 exists such that os>osa, then we can write 

os=a’+α’>osa=a+α, but a=c-k therefore a’+α’>c-k+α≥c-k+k, therefore, a’+α’>c that, for definition, 

is impossible. 

It’s important to note that it’s not excluded the presence of an optimal solution xos>xa or xos≤(2^ba)-

1, but simply if such solution exists then the same solution value do exists for x≤xa and x>(2^ba)-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Proposition 1.2.1 Finding a≥a’ for all possible a’ with a and a’ of any pure base b=2,…,n, can be 

performed in O(n*log(n)) time. 

 

Proof. It will be shown the O(n*log(n)) algorithm maxABase. 

 

int maxABase(int[] w, int n, int c)  

{ 

int k,k1,lsb1,lsb2,lsbmax,lsbmin,i,amax,basemax,base; 

 

i=n-1; 

k=0; 

 while(k<c && i>=0) 

 { 

if (k+w[i]<=c) 

  { 

   k+=w[i]; 

   lsb1=i; 

  } 

  else 

   break; 

  i--; 

 } 

 lsbmin=0; 

 lsbmax=lsb1-1; 

 lsb2=binarySearch(w,c-k,lsbmin,lsbmax); 

 if (lsb2>-1) 

  k+=w[lsb2]; 

 

 amax=0; 

 basemax=n; 

 base=n; 

 

while(base>1) 

 { 

  if (lsb2>-1) 

   k-=w[lsb2]; 

  i=base-1; 

  k-=w[i]; 

  base--; 

  i=lsb1-1; 

  while(k<c && i>=0) 

  { 

   if (k+w[i]<=c) 

   { 

    k+=w[i]; 

    lsb1=i; 

   } 

   else 

    break; 

   i--; 

  } 



  lsbmin=0; 

  lsbmax=lsb1-1; 

  lsb2=binarySearch(w,c-k,lsbmin,lsbmax); 

  if (lsb2>-1) 

   k+=w[lsb2]; 

  

  if (k>amax) 

  { 

   amax=k; 

   basemax=base; 

  } 

  base--; 

 } 

 

 return basemax; 

} 

 

 

binarySearch is a function that searches for an item w(lsb2)=max w(i) ≤c-k, i=lsbmin,…,lsbmax, 

which can be performed in O(log(n)) time. 

 

 

Proposition 1.2.2 given a≥a’ for all possible a’ with a and a’ of any pure base pb=2,…,n, then  

finding optimal solution xosa≤xa and xosa>(2^ba)-1, can be performed in O(n^2*log(n)) time. 

 

Proof. We consider SSP’, i.e., finding ∑x(i)w(i)≤c-a with items w(i),i<lsb (less significant bit), then 

SSP’’,i.e., finding  ∑x(i)w(i)≤c-(a dec 1) with items w(i),i<lsb, until finding  ∑x(i)w(i)≤c-(a dec z) 

with items w(i),i<lsb, where xa dec z is the first available binary number of base a. 

Cardinality of set of all numbers in a given pure base pb can be easily computed as to be O(∑(pb-

i),i=1,…,pb). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Worst-case time complexity of algorithm. 

 

We can now summarize steps of algorithm for a global worst-case time complexity evaluation : 

   

 STEP        COST 

 1 – Sort of weights array w in ascending order.  O(n*log(n)) 

 2 – Search of max pure base a.    O(n*log(n)) 

 3 – Search of optimal solution vector x≤xa, x>(2^ba)-1. O(n^2*log(n)) 

 

 worst case time complexity of algorithm : O(n^2*log(n)). 

expected time complexity of algorithm : O(n*log(n)). 
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